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Abstract

Blind speech separation (BSS) is well-known as a powerful technique for speech enhancement in many real world environments.

In this paper, we propose a new application of BSS - acoustic echo cancellation (AEC) in a car environment. For this purpose,

we develop a block-online BSS algorithm which provides robust separation than a batch version in changing environments with
moving speakers. Simulation results using real world recordings show that the block-online BSS algorithm is very robust to speaker

movement. When combined with AEC, simulation results using real audio recording in a car confirm the expectation that BSS

improves double talk detection and echo suppression.
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|. Introduction

Acoustic echo cancellation (AEC) is an essential
part of a hands—free communication system to
eliminate acoustic echo picked up by a microphone.
AEC is normally employed in a car where a driver
can make a hands—free communication with a far
—end talker while driving. We assume that a voice
from the far—end side is played back by many
speakers (normally more than four) installed in a
car. In a car, there exist strong consistent back—
ground noise and the loudspeaker—enclosure micro—
phone (LEM) environment is constantly changing.
All these make AEC operation difficult. Furthermore,
during double—talk period, the adaptive filter of AEC
is not adapted to maintain stability of the AEC and
echo may not be well—suppressed. Moreover, hands
—free communication may suffer from interfering

signals such as background noise and voices of other
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passengers which cannot be removed in the AEC.

In order to solve these difficulties, in this paper,
we propose to combine blind source separation
(BSS) with AEC to separate the echo and local
signals. The conceptual block diagram of the AEC
combined with BSS is shown in Fig. 1. Block—online
BSS works on two microphone signals and separate
input signals into local driver’s voice and the in~
terfering signals. The interfering signal may be
far—end echo or local interfering signals. The output
channel that contains the local driver’s voice is then
fed into the AEC. The residual echo remains in the
separated output is then removed further in the
AEC.

Blind source separation is a technique to separate
original signals from a set of mixtures without any
information on the originals signals or a mixing
system except that original signals are statistically
independent each other. One practical method for
convolutive BSS is multichannel blind deconvolution
(MBD). MBD is a time—~domain technique that does not

suffer from channel permutation since each separated
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Fig. 1. Block diagram of AEC combines with BSS.

signal appears at the channel closest to each original
source. However, many existing MBD algorithms
converge slowly and separation performance is not
good enough. Furthermore, the separated outputs
are often whitened. Recently, MBD with spectral
normalization, which provides fast and improved
separation while relieving the whitening problem

significantly, has been proposed [1-3].

II. Block Online BSS

The BSS algorithm chosen in this work is a batch
off—line version. The detail description of the
algorithm is given in [2,3]. It can be implemented in
the frequency domain using FFT for reduced
computation.

Let X and u be mixed input and separated (or
unmixed) output vectors, respectively. In addition,
define y=f(u), where f is the time—domain element
—wise nonlinear function [2]. Then the update rule
for the unmixing filter fnatrix W can be described by
the following simplified conceptual expression in the
frequency domain.

AW 0) = {147 B B0 ) AL 6} W 6) D

Here, b is the block index, f denotes the frequency
quantity, Ayv(#) and Au(b) are diagonal matrices that

have \/Pyl (® and \/Pu‘, (b) as diagonal elements, res—

pectively. Further, I denotes the identity matrix. It
is important to notice that the unmixing filters used
here are right—sided. Refer to [3] for some inte—
resting and important issues on filter shape.

The spectral power is computed by the following
update rule.

P (0)=(1-1P, G-D+7|y/ @)

@

P, (6) = (1-7)P, (b-D+y[u/ )

The practical computation includes linear correlations
/convolutions via circular convolutions/correlations
in the frequency domain, respectively. Thus, forward
/inverse DFT and proper aliasing eliminations are
required. The algorithm can be.implemented either
in the overlap—save or overlap—add methods.

As described in [1], the fast stable convergence
of this BSS algorithm comes from the spectral nor—
malization that equalizes the spectral tilt. The al—
gorithm can accommodate a large step size without
causing instability so that it can separate the mixed
signals successfully within few iterations of a given
short data segment. Fast convergence speed is very
important for AEC application.

Since BSS should operate in continuous real—time
for AEC application, we implement the above BSS
algorithm in block—online fashion based on the ex—
isting pfocedures described in [4,5]. The block
—online mode of operation is known to provide very
robust separation performance in changing environmernts.
Input mixed signals are divided into online and offline
blocks. One online block is made of a number of
offline blocks (4 blocks in this case). These offline
blocks are processed iteratively using the batch BSS
described by the update rules (1) and (2). At each
offline block m and at each iteration j, the gradient
from the offline update is computed. The offline
updates are then averaged over K offline block at

iteration J.

e 18
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where L is the length of the unmixing filter. After
each iteration of K off—line blocks, the averaged
offline gradients are then added together to get
online gradient.

awi, (m')= 3, A% () @

where m’ is the online index. After jn.x iterative
learning of K off—line blocks, offline gradient is

updated as follows:
W, (m) =W/ (m=1)+p,.Aw’ ! (m) (5)

In addition, the result of the off—line update is fed
into online update

W, (m")=aw,, (m'-1)+(1- D)AW= (m") (6)

where 4 controls the time constant of the unmixing
filters. Finally, the updated unmixing filter is used as
an initial value for the next online update. The
block—online BSS algorithm is summarized in Table
1. The main advantage of the block—online algorithm
is tracking capability in a changing environment.

lil. Frequency—Domain Block AEC

A basic acoustic echo canceller consists of the

Far-end speech ] x(n)

control

Fig. 2. Block diagram of a basic AEC implementation.

blocks of band—pass filter, de—correlation filter,
voice activity detection, double talk detection, nor—
malized least mean square (NLMS) adaptive filter,
non—linear processor, and optional automatic gain
control [6—8]. The conceptual block diagram illu—
strating the operation of the AEC algorithm is shown

in Fig. 2. Descriptions on major blocks are given below.
3.1, Decorrelation and inverse decorrelation filters

It is known that a fixed first—order decorrelation
filter provides remarkable result [8,10]. The first—
order filter can be a simple high—pass filter since
speech signals have low—pass characteristics. The
formula to decorrelate far—end and microphone
signals for NLMS tap—weight update are:

x,(n) = x(n)—ax(n—1) @
v,(n)=y(n)-ay(n-1) ®

where 0<a<1. We set a=0.85.

Two decorrelation filters are necessary to de—
correlate two signals that are fed into the NLMS
adaptive filter. In addition, an inverse decorrelation
filter is necessary to recover true error signal as

e(ny=e,(n)+ae,(n-1). These blocks are shown in

Fig. 2.
3.2. Voice activity detection

A short—term magnitude estimation of each block

of input signal is computed as [8]

[x(m)] = (1= y () |x(m)| + 7 (W x(n = 1)| ©)

, (n)z{y,, if |x(n)| > [x(n—1)|

7;, ortherwise.

For 8 kHz sampling rate, we choose ¥,=0.95 and

Yr=0.97. Voice activity of a far—~end signal is
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Table 1. Implementation of the Block-oniine BSS algorithm [5].

On-line Part: ) [
Collect off-line audio samples
Let N denote the frame size, M(=NxR) the block size in
1. a frame. The collected signal is given by,
x,(m) =[x, (m'KM), - x, (m' Kb + KM 1)

where R is the overlap ratio between frames, 0 <R <1,

Form KX off-line blocks. The off-line biock index is

2 m=m'K, - mK+K-1,
Off-line Part:
jzl’...’jmax
m=m'K,,mK+K-1
3 Perform batch BSS

u, (m) =W, (m)*x, (m)

Compute the average AW » .

-1
o AW ()= 2 (m)

o)
-

Aw? (m')= ;Afv’; (m)

Perform off-line update.

W (m) =W, (m=1)+ s Aw ()

On-line Part: :

Perform online uupdate.

w,, (m")=Aw, (m'-1)+({1- DAW= (m')

5.

6.

Use online filter as an initial off-line filter and repeat step
7. 2-6.

W, (mt+1) = w,, (m)

detected if the short—term magnitude exceeds a
predefined noise threshold of 35 dB.

3.3. Double talk detection

Double talk detection is a typical problem that is
deeply concerned in AEC implementation to detect
the situation in which both sides talk simultaneously.
During the double talk period, the residual error
increases due to local speech so that the AEC
stability bound decreases and the algorithm may
start to diverge. This situation must be prevented
and the adaptive filter coefficients must be frozen
during the double talk. Two typical methods to detect
the double talk are correlation—based and energy

~based methods. The first one uses degree of si—

milarity between microphone signal y (@) and the
output signal d(n) of adaptive filter or the loudspeaker
signal x(n) in term of correlation [6,8] whereas the
second method compares the microphone signal level

with the speaker signal level.
3.4, Frequency—domain block NLMS adaptive filter

The frequency domain block NLMS filter provides
a possible solution to the computational structure
and complexity problem. The algorithm consists of
the following main steps [9].

The most recently acquired block of N2 input
samples and the previous block make up the new
input block X, and this new block was transformed
into frequency domain by the discrete Fourier trans—
form: X, =F{x,}. The most recent M frequency do—
main input blocks are retained as X, =[X, X, X, ]

The adaptive filter uses low—latency structure
where the filter response is evenly divided into
non—overlapping segments and filter output can be

calculated in time—domain as

M*N/2-1 M-1N/2-1

Hn) = Z h(j)x(n—j)=§k‘;ohi(k)x,.(n—k) (10

which can be computed in the frequency domain

using the overlap—save or overlap—add method as

M-1
Yn(k)=§xn,i(k)ni(k), k=0,.,N/2 an

where H;is a segments of NLMS filter response in

frequency domain.

V. Simulations

4.1, Block—online BSS algorithm

We investigated the performance of the block

—online BSS algorithm in a room environment with
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reverberation time Tgo=500 ms. Two speakers are
1 m apart from two microphones and microphone
spacing is set to 15 cm. In order to investigate the
performance of the block—online BSS algorithm, we
first use two fixed speakers at 70° and 110°. Signals
are sampled at 16 kHz and collected for 10 sec.
Parameters used for the batch part are frame size
4096, block size 2048, frame rate 50%, p=0.08,
v=0.5. For the block—online BSS, we set K=4,
1,,=0.16, =0.2, jimzx=5. Table 2 is the performance
of block—online for the fixed speakers. Notice that
the block—online BSS provides slightly better SIR
than the batch version. This is due to the fact that
the block—online version adapts the time—varying
nature of speech signals better than the batch
version.

To investigate the separation performance of the
block—online BSS algorithm, the speaker 2 at 110° was
moved to 150° after 10sec. Figure 3 show the SIR
performance of the block—online BSS algorithm for
the 20 sec.

After moving of speaker 2 at 10 sec, the SIR of
the fixed speaker was dropped while that of moved

speaker increased. This is because mixing filters for

Table 2. Separation performance for the fixed speakers.

ch1 (dB) ch?2 (dB) Avg (dB)
Batch 11.19 994 1057
Block-online 12.59 10.18 11.39
BLK-LEN 2048 NITER 5 mu 0.08 gamma 0.5 FS 16000
18- - - ---- - -a- - - - -

SIR (dB)
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Fig. 3. SIR of the block-online BSS algorithm for a changing
environment.

the fixed speaker are estimated easily whereas
those for the moved speaker are not. It takes about
2 sec to be recovered completely from the change.
Compare to the SIR result in Table 2, we can see that
the average SIR of the block—online BSS algorithm
is degraded only by 1 dB for the changing en—
vironment.

4.2. AEC combined with block—online BSS

Simulation Setup:

Microphone placement in a car and the processing
steps for the AEC+BSS are shown in Fig. 4. This
simulation setup is very tough because the far—end
voice is played back by the six speakers of the car.
Thus, this arrangement is very helpful to prevent
channel permutation of the separated output [2]. It
should be noticed that this microphone arrangement
may not be sufficient for the frequency—domain BSS
algorithm to avoid the channel permutation problem.
In a car, the reverberation time is approximately 50
msec and sampling rate is 8 kHz. Since background
noise level in the car (including engine noise and
wind noise) is noticeably high, both BSS and AEC
performances may degrade and Wiener filtering is
necessary to eliminate the noise. In our simulation,
AEC is setup with the NLMS adaptive filter of length

x2
l Wiener filter I

i i

| Block online 8SS |

|

[ Acoustic Echo Cancellation I
lﬁnhanoed local speech

Fig. 4. Simulation setup and speech enhancement process.
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256, block size B=N/2=64, step size z=0.05. Block
—online BSS is set up with filter size L=1024, frame
size 4L, and 10 learning iterations.

Contribution of the block—online BSS to double .

—talk detection

Since echo signal is suppressed by BSS and its
average power is reasonably smaller than the power
of local speech. So we can simply use energy—based
double talk detection to detect double—talk period.
For this purpose, we selected the Geigel method
which compares the echo signal level to the re—
ference signal level (from speaker) to detect double
talk.

The average energy of last A blocks of the reference
signal IJ?,I is compared with the average energy of echo

in current block |3| double talk is declared if

|c7| > c*max(|fo|,!fll,...,

Ta|) 12

where ¢ is a threshold to reflect environment
attenuation.

Fig. 5 shows the double—talk detection by the
proposed method with the attenuation parameter
¢,=0.85 for the AEC—only case and ¢,=0.35 for the
AEC+BSS case, parameters are optimized for the
best results in each case. As we can see, the false
double talk detection is reduced remarkably in the

AEC double-talk detection

Double talk
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N
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N B BN .
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Block Index

Fig. 5. Geigel double-talk detection for the AEC-only {above)
and BSS+AEC (below) cases.
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proposed AEC+BSS case due to echo suppression
by BSS.

Contribution of block—online BSS to echo suppression

Fig. 6 shows the recorded signal by two microphones
and the resulting echo remaining after BSS and AEC.
After BSS, echo is remarkably suppressed while
retaining the local speech. The residual echo after
BSS is suppressed further in AEC so that only local
speech is transmitted to the far—end side.

To evaluate the performance of AEC and AEC
combines with BSS, the error return loss enhan—
cement (ERLE) is calculated at time index n as follows

=

ERLE = =2

echo

where a and €2, are the power of the echo signal

at microphone and the remain echo at the output
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Fig. 6. Microphone speech signals and processed signals after
BSS and AEC.



ERLE of AEC only and AEC combines with BSS

60.- i ERLE AEC only: ST=370B; DT=15dB |

l = -~ ERLE AEC+BSS: 8T=44dB; DT=19dB ‘

ERLE (dB}

00— L L L i
0 20 40 60 80 100 120
Block index

Fig. 7. Comparison of ERLE: AEC-only (dash-dot) and BSS+
AEC (solid). The ERLE values represent running—-average
over 10 blocks.

after AEC, respectively, averaged over 10 blocks.
Note that, in this simulation, we use the same true
double —talk period for AEC so that the improvement
of ERLE only comes from SIR gain of BSS. The
combined structure provides higher ERLE of
approximately 7 dB in single talk and 4 dB in double
talk period when compare to the AEC—only case as
shown in Fig 7. With the help of more accurate
double talk detection by energy based method, the
AEC+BSS can provides higher improvement of ERLE,
especially during double talk period.

V. Conclusions

In this paper, we have proposed a new application
of BSS to enhance acoustic echo cancellation in a car
environment. The proposed method is to combine
BSS with AEC. Basic AEC and block—online BSS
implementations have been described. Draft simulation
results in a car revealed that putting BSS before AEC
can enhance echo cancellation performance during
both single talk and double talk periods in a hands
—free communication system. Moreover, double talk
detection becomes easier and more accurate. This
study proves that BSS would be a viable technique
for AEC in a real world situation.
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